II.2.2 異常燃焼について(2 エンジン)(II.関連研究)
スポンサーリンク
概要
- 論文の詳細を見る
Throughout the static firing tests, measurements and analyses of the oscillatory combustion have been studied most carefully, with the use of various pressure indicators and a playback system of the recorded signal. We have experienced some cases of heavy pressure oscillations. These cases are classified into two groups. In one of them, an abrupt pressure rise is triggered by a small pressure spike occured just ahead of the pressure increase. This small spike may be due to the plugging of the nozzle throat by burnt fragments of cellulose acetate used for a cylindrical igniter case. To avoid this fault, in the later stage of our experiments, the cylindrical igniter was replaced by a cage igniter. On the other hand, the sudden pressure rise of the latter type is occured in the tailoff period, and the pressure level at which instabilities build up is lower than the maximum pressure. From the concept of the existence of the upper limit of the combustion pressure under which engines burn normally, this phenomenon cannot be easily explained, and the following view is proposed. By the severe erosion at the nozzle end, the propellant around the nozzle end was completely burnt out in a relatively early period and the inner surface of an engine cylinder near the nozzle end was exposed to the combustion gas. This causes the rapid decrease of the propellant surface and the visco-elastic damping effect by propellant itself becomes smaller compared to the amplifying effect of the combustion surface. When some disturbances are applied to this circumstance, acoustic oscillation will be excited and amplified to the fatal strength. But, both types of sudden pressure increase are in common with respect to their attendance with the fundamental longitudinal vibrational mode. The other remarkable anomaly of the combustion of our engine is its severe erosion. To know the more detail of the erosion, the comparison between the observed times of the beginning of tailoff and the calculated values assuming the mass flow density erosion and the velocity erosion is carried out. The erosion directly observed in a grain interrupted after burning for a short period is also explained with the same assumption.
- 宇宙航空研究開発機構の論文
著者
関連論文
- 燃焼反応に伴う環境汚染物質の挙動研究分科会報告
- M-3S のロケット・モータ
- 液水/液酸 10 トン溝構造燃焼器の試作と燃焼実験
- 液水/液酸7トン管構造燃焼器の試作と燃焼実験
- 液水/液酸エンジンタービンスピナの開発
- ターボポンプの開発
- 液水/液酸エンジンの開発
- 液水/液酸ステージの開発
- 液水/液酸ターボポンプ用ガスジェネレーターの開発研究
- 内圧振動
- 地上燃焼実験のオフラインデータ処理
- 現用固体推薬について
- TVCの地上試験
- 燃焼性能
- 能代実験場の概要
- 地上燃焼実験特集号
- レトロモータ真空燃焼実験
- ロケットモータおよび点火器
- 点火器(ラムダ4S型ロケット)
- L-エンジンの地上燃焼試験(ラムダ4S型ロケット)
- 地上燃焼試験報告
- 液水/液酸ターボポンプの実験 I. ポンプ
- 化学衝撃波管による高温反応 : I.メタン, アセチレン-窒素系よりの HCN 生成
- 理論性能計算
- M-3Hのロケット・モータ
- フーリエ変換赤外分光法による発光スペクトルの研究
- 低濃度化学種の分析装置 : 分子線質量分析計
- M-3Cのロケットモータ
- 衝撃波速度の測定と高速データ収録系の製作
- T-バーナの解析法について
- オクタン空気混合気の定圧燃焼時の生成気体の組成 : 第1報,ボイラ排気中のNO濃度
- オクタン空気混合気の定圧燃焼時の生成気体の組成 : 第1報, ボイラ排気中のNO濃度
- 燃焼反応に関する速度定数について
- ロケットエンジンおよびSO装置
- II.2.2 異常燃焼について(2 エンジン)(II.関連研究)