A Brooks Type Integral with Respect to a Set-Valued Measure
スポンサーリンク
概要
- 論文の詳細を見る
A generalization of the set--valued Brooks integral [3] with respect to a set--valued measure whose values are subsets of a Hausdorff locally convex topological vector space is presented. The construction of this new kind of integral is based on Weber's result [19] concerning the existence of a family of semi--invariant pseudo--metrics which ge\-ne\-ra\-tes the uniformity of a uniform semigroup (in our case, the semigroup of convex, bounded, closed subsets of a Hausdorff locally convex topological vector space). Several properties of the new integral are given and also a theorem of Vitali type is established.
論文 | ランダム
- 半正定値計画による演算誤差を考慮したアフィン射影算法の更新則の設計
- 半正定値計画による演算誤差を考慮したアフィン射影算法の更新則の設計
- A-1-4 Cell/B.E.による巡回セールスマン問題のための2-opt法の高速化と評価(A-1.回路とシステム,一般セッション)
- 鉄鋼材料の結晶粒超微細億への挑戦(限界に挑戦)
- Epstein-Barr virus-associated B-cell lymphoma secondary to FCD-C therapy in patients with peripheral T-cell lymphoma