A Brooks Type Integral with Respect to a Set-Valued Measure
スポンサーリンク
概要
- 論文の詳細を見る
A generalization of the set--valued Brooks integral [3] with respect to a set--valued measure whose values are subsets of a Hausdorff locally convex topological vector space is presented. The construction of this new kind of integral is based on Weber's result [19] concerning the existence of a family of semi--invariant pseudo--metrics which ge\-ne\-ra\-tes the uniformity of a uniform semigroup (in our case, the semigroup of convex, bounded, closed subsets of a Hausdorff locally convex topological vector space). Several properties of the new integral are given and also a theorem of Vitali type is established.
論文 | ランダム
- Change Over Time of SF-36 Functional Outcomes for Operatively Treated Unstable Ankle Fractures
- K-53 ヘパリンによるヒト絨毛細胞由来不死化細胞株(TCL-1)のin vitro scratch創修復(高得点演題13 周産期,第63回日本産科婦人科学会学術講演会)
- 今月の症例 結核性リンパ節炎と鑑別を要した高齢者猫ひっかき病の1例
- A Serological Investigation of Bartonella henselae Infection in Cats in Turkey
- 狭帯域ネットワークを介した映像のブラウジング手法 (特集 実用化時期を迎えたMPEG-4)