On the Iwasawa $了$-invariant of the Real $p$-cyclotomic Field
スポンサーリンク
概要
- 論文の詳細を見る
For any totally real number field $k$ and any prime number $p$, it is conjectured that the Iwasawa invariants $了_p(k)$ and $亮_p(k)$ are both zero. We give a new criterion for the conjecture to be true when $k$ is the real $p$-cyclotomic field, introducing a new way to apply $p$-adic $L$-functions. In a sense, it is a natural "generalization" of the classical criterion for the Vandiver conjecture.
- 東京大学の論文
著者
-
Sumida Hiroki
Department Of Mathematical Sciences University Of Tokyo
-
Ichimura Humio
Department of Mathematics, Yokohama City University
-
Ichimura Humio
Department of Mathematics Yokohama City University
関連論文
- On the Iwasawa $了$-invariant of the Real $p$-cyclotomic Field
- On the Iwasawa invariants of certain real abelian fields
- On a normal integral based problem over cyclotomic Z_p-extensions