振動系非線形方程式における高次の擬Symplectic数値解法の評価と適用
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we obtain the algorithm of fundamental Pseudo-symplectic numerical solution which is modified the Symplectic solutions in dissipative systems, and imply the higher order Pseudo-symplectic solutions with considering oscillation systems. That consists of symplectic terms and dissipative terms. And, it is known that the higher order Symplectic numerical solutions exist. Therefore, it is easy to lead to the higher order Pseudo-symplectic solutions on symplectic part. However, that is incorrect as it is. Accordingly, we apply to the second order Euler method on its dissipative part. This method is more effective as higher order solutions on bifurcation diagram.
- 岡山理科大学の論文
著者
関連論文
- 振動系非線形方程式における高次の擬Symplectic数値解法の評価と適用
- 山越えする渡り鳥の受ける風 (アネハ鶴)
- Symplectic 数値解法による散逸系及び不規則軌道の安定性の評価
- 構成子カスケードモデルによる Kp 及び πp 衝突におけるチャームハドロンの生成
- 共変型構成子カスケード模型によるハドロンー原子核衝突のシミュレーション
- Cartan の対称変換と4次元 spinor
- (dtμ)分子の束縛状態