<論文>量子力学における定常摂動論の再定式化 II : 一次元散乱問題への適用
スポンサーリンク
概要
- 論文の詳細を見る
In our previous paper we proposed a new reformulation for the stationary perturbation method in quantum mechanics, where the Schrodinger equation is changed into the Ricatti equation through the transformation of logarithmic derivative type. Taking the anharmonic oscillator of gx^4 type, we found that our method remarkably reduces cumbersome and lengthy calculations for wave functions and energy eigenvalues. In the present paper, we apply our method to scattering problems in one space-dimension for cases of energy being much larger than potential barriers. It is shown that it reproduces the well-known results of the Born scattering as well as the conservation of probability at the first order approximation in perturbation expansions.
- 山口県立大学の論文
- 2002-03-25
著者
関連論文
- 量子力学における定常摂勅諭の再定式化III縮退を持つ系の摂動諭 : 2次元平面回転子を例として
- 量子力学における定常摂動論の再定式化 II : 一次元散乱問題への適用
- 量子力学における定常摂動論の再定式化 : 非調和振動子を例として