Killing vector fields on semiriemannian manifolds
スポンサーリンク
概要
- 論文の詳細を見る
It is well known that a Killing vector field on a riemannian compact manifold is holonomic (Kostant (4)). In other words, the Ax operatpr (Ax=Lx-▽x=-▽x) lies in the holomony algebra of the manifold. The covariant derivative of Ax gives us a curvature transformation. This fact and the Ambrose-Singer theorem show that the Ax operator lies infinitesimally in the holonomy algebra h. (i.e. [?]Y, ▽rAx=Rxy∈h) (*) The subjebt of our study is the holonomicity of a Killing vector field on a semiriemannian compact manifold. We remarl the validity of (*) on semiriemannian manifolds. In order to simplify is study, we constrain it to Lorentz locally strictly weakly irreducible manifolds (1.SWI). We remark that Beger (1) showed that the holonomy algebra of a Lorentz manifold which is irreducible and non locally symmetric is the whole po(n, 1). Therefore, we can leave out this case. Stictly weakly irreducible manifolds, defined by H. Wu (5, 6) in 1963 are the cornerstones of this study. Among there we have found examples of compact manifolds with a non holonimoic Killing vector field.
- 筑波大学の論文
筑波大学 | 論文
- 「中高一貫校」のカリキュラムにおける接続の問題 : 筑波大学附属駒場中・高等学校を事例として
- 中国細石刃文化の展開とその背景
- 石器製作技術から見た華北前期・中期旧石器文化の変遷 : 中部更新世後期から上部更新世前期の石器群の変遷
- 中学生の犯罪報道ストレッサーと心理的ストレス過程の検討
- 大学スポーツ部活動の運営 : T大学サッカー部の運営に関する事例