Extension of CR structures on pseudoconvex CR manifolds with one degenerate eigenvalue
スポンサーリンク
概要
- 論文の詳細を見る
Let $\bar{M}$ be a smoothly bounded orientable pseudoconvex CR manifold of finite type with at most one degenerate eigenvalue. Then we extend the given CR structure on $M$ to an integrable almost complex structure on the concave side of $M$. Therefore we may regard $M$ as the boundary of a complex manifold.
- 東北大学の論文
著者
-
Cho Sanghyun
Department Of Mathematics Sogang University
-
Cho Sanghyun
Department Of Mathematics Edu. Pusan University
関連論文
- STABILITY OF THE ESTIMATES FOR $ \partial $-EQUATION ON COMPACT PSEUDOCONVEX COMPLEX MANIFOLDS
- Extension of CR structures on pseudoconvex CR manifolds with one degenerate eigenvalue
- A construction of peak functions on locally convex domains in C^n
- Extension of CR structures on three dimensional pseudoconvex CR manifolds
- A mapping property of the Bergman projection on certain pseudoconvex domains