On the second variation of the identity map of a product manifold
スポンサーリンク
概要
- 論文の詳細を見る
Suppose the fractional integration operator $I^σ$ is generated by the sequence $(k+1)^<-σ>$ in the setting of Laguerre and Hermite expansions. Then, via projection formulas, the problem of the norm boundedness of $I^σ$ is reduced to the well-known fractional integration on the half-line. A corresponding result with respect to the modified Hankel transform is derived and its connection with the Laguerre fractional integration is indicated.
- 東北大学の論文
著者
-
Ratto Andrea
Dipartimento Di Matematica Universita Di Cagliari
-
Ratto Andrea
Dipartimento Di Matematica Universita Della Calabria
-
Fardoun Ali
Departement de Mathematiques, Universite de Brest
-
Fardoun Ali
Departement De Mathematiques Universite De Brest
関連論文
- On the second variation of the identity map of a product manifold
- Gradient bounds and Liouville's type theorems for the Poisson equation on complete Riemannian manifolds