LMI Approach to Output Feedback Stabilization for Fuzzy Systems with Immeasurable Premise Variables
スポンサーリンク
概要
- 論文の詳細を見る
This paper is concerned with output feedback control design for a fuzzy system with immeasurable premise variables. It is well known that Takagi-Sugeno fuzzy model describes a wide class of nonlinear systems especially when its premise variables include immeasurable functions. However, when it comes to control design of such a fuzzy system with immeasurable premise variables, a conventional parallel distributed compensator (PDC) is not feasible because it shares the same premise variables as those of a fuzzy system. In this paper, we introduce an output feedback controller with the estimate of the premise variables of an original fuzzy system. We then formulate the stabilization problem for a fuzzy system with immeasurable premise variables. Our control design method is based on a set of strict LMI conditions. No tuning parameter is necessary a priori to solve LMI conditions. Our method includes tuning matrices for control gains in a controller and hence they can be chosen to optimize the control performance of the system. Numerical examples are finally given to illustrate our control design method.
- 日本知能情報ファジィ学会の論文
- 2010-06-15
著者
関連論文
- Robust Output Feedback Stabilization of Uncertain Discrete-Time Fuzzy Systems with Immeasurable Premise Variables
- Robust H∞ stabilization of fuzzy systems with time-varying uncertainty (第18回 ファジィシステムシンポジウム講演論文集--文の知と理の知の二人三脚)
- LMI Approach to Output Feedback Stabilization for Fuzzy Systems with Immeasurable Premise Variables