Modeling for PEFC MEAs Based on Reaction Rate on Pt Surface and Microstructures of Catalyst Layers
スポンサーリンク
概要
- 論文の詳細を見る
A polymer electrolyte fuel cell membrane electrode assembly (PEFC MEA) model that focuses on the structural and reaction parameters of catalyst layers has been developed. The reaction and structural parameters were modeled independently by considering the oxygen reduction reaction (ORR) activity in terms of current per unit active surface area of Pt [A cm–2-Pt]. The catalyst layer models were constructed based on an assumption of cylindrical secondary pore structure, which was verified by measuring the primary pore size using mercury porosimetry. We found that penetration of Nafion® electrolyte into the primary pores of Pt/C catalysts was restricted, and thus diffusion and reaction in primary pores became negligible. Moreover, the experimental results demonstrated that for the same catalyst, ORR activity remained almost constant, irrespective of the agglomerate size (i.e., 2.7 × 10–6 A cm–2-Pt at 60°C for Pt/C TEC10E50E in this study). This supported our idea that reaction parameters and structural parameters should be considered independently in PEFC modeling. The cell performance predicted with the developed model was satisfactorily accurate as compared to that obtained from experiments. As a result, the modeling developed in this study can be used to construct simple PEFC models that yield results with good accuracy and can be a useful tool for the development of PEFCs in future.
- 社団法人 化学工学会の論文
- 2009-12-01
著者
-
Yamaguchi Takeo
Tokyo Inst. Technol. Kanagawa Jpn
-
Ito Taichi
Chemical Resources Laboratory Tokyo Institute Of Technology
-
Ito Taichi
Department Of Chemical System Engineering The University Of Tokyo
-
Yamaguchi Takeo
Department Of Chemical System Engineering The University Of Tokyo
-
Ohashi Hidenori
Chemical Resources Laboratory, Tokyo Institute of Technology
-
Yamaguchi Takeo
Chemical Resources Laboratory, Tokyo Institute of Technology
-
LIMJEERAJARUS Nuttapol
Department of Chemical System Engineering, The University of Tokyo
-
Yamaguchi Takeo
Chemical Resources Laboratory Tokyo Institute Of Technology
-
Ohashi Hidenori
Chemical Resources Laboratory Tokyo Institute Of Technology
-
Limjeerajarus Nuttapol
Department Of Chemical System Engineering The University Of Tokyo
-
NISHIYAMA Yosuke
Department of Chemical System Engineering, The University of Tokyo
-
Ito Taichi
Center For Disease Biology And Integrative Medicine Department Of Bioengineering Faculty Of Medicine
-
Nishiyama Yosuke
Department Of Chemical System Engineering The University Of Tokyo
-
Yanagimoto Tatsunori
Department Of Chemical System Engineering The University Of Tokyo
-
0hashi Hidenori
Chemical Resources Laboratory, Tokyo Institute of Technology
関連論文
- Analysis of Oxygen Reduction Reaction Activity of Pt/C Catalysts for Actual PEFC MEAs
- Nanoscale Morphological Control of PEFC Cathode Electrodes by Introducing Proton Conducting Groups onto Platinum-supported Carbon Black
- High-Pressure-Induced Hemolysis of Hereditary Spherocytic Erythrocytes Is Not Suppressed by DIDS Labeling
- Application of a Zeolite A Membrane to Reaverse Osmosis Process
- Interaction of Carbodiimide with Human Erythrocytes : Hemolytic Properties Induced by High Pressure, Heating, and Hypotonic Medium
- High Pressure Sensitizes Murine Erythroleukemia Cells to Caffeine-Induced Premature Mitosis
- Effects of Chemical Modification of Cysteines 201 and 317 of Band 3 on Hemolytic Properties of Human Erythrocytes under Hydrostatic Pressure
- High Pressure Induces G2 Arrest in Murine Erythroleukemia Cells^1
- Morphological Investigations of Surface Modified Zirconia Precursor by Perfluorosulfonated Ionomer Using Nano Capping Technique
- Development and Modification of a PEMFC Electrode by Using a Hydrocarbon Ionomer for High Utilization of Catalyst
- Development of Enzyme-Encapsulated Microcapsule Reactors with Ion-Responsive Shell Membranes
- High-Voltage Operation of Polymer Electrolyte Fuel Cells under Low Humidity Condition with Pt-Co Catalyst
- High-Voltage Operation of Polymer Electrolyte Fuel Cells under Low Humidity Condition with Pt–Co Catalyst
- A New Free Volume Theory Based on Microscopic Concept of Molecular Collisions for Penetrant Self-Diffusivity in Polymers
- Analysis of Pore Size Using a Straight-Pore Molecular Recognition Ion Gating Membrane
- Theoretical Studies of the Mechanism of Proton Transfer at the Surface of Zirconium Phosphate
- Characterization of High-pressure-induced Murine Erythroleukemia Cell Apoptosis by Proton Spin-Lattice Relaxation Times of Intracellular Water
- Water proton spin-lattice relaxation time during the apoptotic process in ultraviolet-irradiated murine erythroleukemia cells
- Polymer Electrolyte Fuel Cell Modeling Considering Catalyst Activity and a Microscopic Reaction Phenomenon: Coverage of Oxygen-Containing Species
- Release of Spectrin-Containing Vesicles from Human Erythrocyte Ghosts by Dimyristoylphosphatidylcholine^1
- Dual-Ion Conducting Lithium Zirconate-Based Membranes for High Temperature CO_2 Separation
- Excimer Fluorescence of N-(1-Pyrenyl)iodoacetamide-Labeled Spectrin
- Effects of Anion Transport Inhibitors on Hemolysis of Human Erythrocytes under Hydrostatic Pressure
- Morphological Investigations of Surface Modified Zirconia Precursor by Perfluorosulfonated Ionomer Using Nano Capping Technique
- Polymer Electrolyte Fuel Cell Modeling Considering Catalyst Activity and a Microscopic Reaction Phenomenon : Coverage of Oxygen-Containing Species
- Modeling for PEFC MEAs Based on Reaction Rate on Pt Surface and Microstructures of Catalyst Layers
- Membrane Perturbations of Erythrocyte Ghosts by Spectrin Release
- Caspase Activation in High-Pressure -Induced Apoptosis of Murine Erythroleukemia Cells
- ESR Measurement Using 2-Diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-Oxide (DPhPMPO) in Human Erythrocyte Ghosts
- Suppression of High-Pressure-Induced Hemolysis of Human Erythrocytes by Preincubation at 49*C^1
- Cell-Substratum Adhesion Is Suppressed by High Pressure
- High-Pressure-Induced Hemolysis in Papain-Digested Human Erythrocytes Is Suppressed by Cross-Linking of Band 3 via Anti-Band 3 Antibodies
- Enhancement of Pressure-Induced Hemolysis by Aquaporin-1 Inhibitors in Human Erythrocytes
- Reinvestigation of Drugs and Chemicals as Aquaporin-1 Inhibitors Using Pressure-Induced Hemolysis in Human Erythrocytes
- Molecular recognition moiety and its target biomolecule interact in switching enzyme activity(ENZYMOLOGY, PROTEIN ENGINEERING, AND ENZYME TECHNOLOGY)
- Studies of spin-labeled sodium dodecyl sulfate. II Effect of sodium chloride on ESR line width.
- Studies of spin labeled sodium dodecyl sulfate. I. Synthesis and properties.
- A study of surfactant solutions using the liquid membrane electrode selective to alkyl sulfate ions.
- Effect of length of molecular recognition moiety on enzymatic activity switching(ENZYMOLOGY, PROTEIN ENGINEERING, AND ENZYME TECHNOLOGY)
- Release of Spectrin-Containing Vesicles from Human Erythrocyte Ghosts by Dimyristoylphosphatidylcholine.
- Molecular recognition moiety and its target biomolecule interact in switching enzyme activity