INTEGRAL INEQUALITY FOR MINIMAXITY IN THE STEIN PROBLEM
スポンサーリンク
概要
- 論文の詳細を見る
In the estimation of a multivariate normal mean, it is shown that the problem of deriving shrinkage estimators improving on the maximum likelihood estimator can be reduced to that of solving an integral inequality. The integral inequality not only provides a more general condition than a conventional differential inequality studied in the literature, but also handles non-differentiable or discontinuous estimators. The paper also gives general conditions on prior distributions such that the resulting generalized Bayes estimators are minimax. Finally, a simple proof for constructing a class of estimators improving on the James-Stein estimator is given based on the integral expression of the risk.
- 日本統計学会の論文
- 2009-12-01
著者
関連論文
- AN EMPIRICAL BAYES INFORMATION CRITERION FOR SELECTING VARIABLES IN LINEAR MIXED MODELS
- AKAIKE INFORMATION CRITERION FOR SELECTING COMPONENTS OF THE MEAN VECTOR IN HIGH DIMENSIONAL DATA WITH FEWER OBSERVATIONS
- COMPARISON OF DISCRIMINATION METHODS FOR HIGH DIMENSIONAL DATA
- PREDICTION IN MULTIVARIATE MIXED LINEAR MODELS
- ESTIMATION OF BOUNDED LOCATION AND SCALE PARAMETERS
- MINIMAXITY IN ESTIMATION OF RESTRICTED PARAMETERS
- ESTIMATION OF VARIANCE AND COVARIANCE COMPONENTS IN ELLIPTICALLY CONTOURED DISTRIBUTIONS
- CHARACTERIZATION OF PRIORS IN THE STEIN PROBLEM
- INTEGRAL INEQUALITY FOR MINIMAXITY IN THE STEIN PROBLEM
- Estimation of EPMC for High-dimensional Data(Session 3b)