遺伝的プログラミングでの多様性維持について
スポンサーリンク
概要
- 論文の詳細を見る
This paper is motivated by an experimental result that better performing genetic programming runs tend to have higher phenotypic diversity. To maintain phenotypic diversity, we apply implicit fitness sharing and its variant, called unfitness multiplying. To apply these methods to problems in which individuals have infinite kinds of possible behaviours, we classify posible behaviours into 50 achievement levels, and assign a reward or a penalty to each level. In implicit fitness sharing a reward is shared out among individuals with the same achievement level, and in unfitness multiplying a penalty is multiplied by the number of individuals with the same level and is distributed to related individuals. Five benchmark problems (11-multiplexer, sextic polynomial, four-sine, intertwined spiral, and artificial ant problems) are used to illustrate the effect of the methods. The results show that our methods clearly promote diversity and lead population to a smooth frequency distribution of achievement levels, and that our methods usually perform better than the original implicit fitness sharing on success rate and the best (raw) fitness. We also observe that the unfitness multiplying makes a quite different ranking over individuals than the one by the implicit fitness sharing.
- 社団法人 人工知能学会の論文
- 2006-11-01
著者
-
沼口 靖
日立化成工業株式会社
-
元木 達也
新潟大学大学院自然科学研究科情報・計算機工学専攻
-
元木 達也
新潟大学工学部
-
元木 達也
College Of General Education Niigata University
関連論文
- 仮想アセンブリ言語における遺伝的プログラミングについて
- 小さな個体を探索するGPの効率化
- 遺伝的プログラミングの動作について
- 非格子モデル/GAによるタンパク質立体構造の予測
- 2人ゲーム戦略の共進化について
- 分類子システムを用いた蛋白質膜貫通領域の識別
- INDUCTIVE INFERENCE FROM ALL POSITIVE AND SOME NEGATIVE DATA
- 遺伝的プログラミングでの多様性維持について
- Nim ゲーム戦略の競合的進化について
- ボルツマン機械の学習アルゴリズムについて