C^∞-vectors of irreducible representations of exponential solvable Lie groups
スポンサーリンク
概要
- 論文の詳細を見る
Let G be an exponential solvable Lie group, and π be an irreducible unitary representation of G. Then by induction from a unitary character of a connected subgroup, π is realized in an L2-space of functions on a homogeneous space. We are concerned with C∞vectors of π from a viewpoint of rapidly decreasing properties. We show that the subspace \\mathcal{S}\\mathcal{E} consisting of vectors with a certain property of rapidly decreasing at infinity can be embedded as the space of the C∞vectors in an extension of π to an exponential group including G. Using the space \\mathcal{S}\\mathcal{E}, we also give a description of the space \\mathcal{A}\\mathcal{S}\\mathcal{E} related to Fourier transforms of L1-functions on G. We next obtain an explicit description of C∞vectors for a special case. Furthermore, we consider a space of functions on G with a similar rapidly decreasing property and show that it is the space of the C∞vectors of an irreducible representation of a certain exponential solvable Lie group acting on L2(G).
- 社団法人 日本数学会の論文
- 2007-10-01
著者
-
Inoue Junko
University Education Center Tottori University
-
LUDWIG Jean
Department of Mathematics University of Metz
関連論文
- C^∞-vectors of irreducible representations of exponential solvable Lie groups
- 可解Lie群の既約表現におけるある$C^{\infty}$-ベクトルの特徴付けについて (Representation Theory and Analysis on Homogeneous Spaces)