Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data
スポンサーリンク
概要
- 論文の詳細を見る
We investigate the nonstationary Navier-Stokes equations for an exterior domain Ω⊂R3 in a solution class Ls (0,T;Lq(Ω)) of very low regularity in space and time, satisfying Serrins condition $¥frac{2}{s}$+$¥frac{3}{q}$=1 but not necessarily any differentiability property. The weakest possible boundary conditions, beyond the usual trace theorems, are given by u|∂Ω=g∈Ls (0,T;W-1/q,q(∂Ω)), and will be made precise in this paper. Moreover, we suppose the weakest possible divergence condition k=divu∈Ls(0,T;Lr(Ω)), where $¥frac{1}{3}$+$¥frac{1}{q}$=$¥frac{1}{r}$.
- 社団法人 日本数学会の論文
- 2007-01-01
著者
-
Farwig Reinhard
Fachbereich Mathematik, Technische Universitat Darmstadt
-
Sohr Hermann
Fakultat Fur Elektrotechnik Informatik Und Mathematik Universitat Paderborn
-
Farwig Reinhard
Fachbereich Mathematik Technische Universitat Darmstadt
-
KOZONO Hideo
Mathematical Institute Tohoku University
-
Kozono Hideo
Mathematical Institute Graduate Schoolof Sciences Tohokuuniversity
-
Farwig Reinhard
Fachbereich Mathematik Technische Hochschule Darmstadt
-
Sohr Hermann
Fakultat fur Elektrotechnik, Informatik und Mathematik Universitat Paderborn
関連論文
- Spectral properties in $L^q$ of an Oseen operator modelling fluid flow past a rotating body
- Spectral analysis of a Stokes-type operator arising from flow around a rotating body
- The Stokes Resolvent Problem in General Unbounded Domains(Kyoto Conference on the Navier-Stokes Equations and their Applications)
- Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data
- Weighted L^q-theory for the Stokes resolvent in exterior domains
- Weak solutions of the Navier-Stokes equations with test functions in theweak-L^n space
- Spectral analysis of a Stokes-type operator arising from flow around a rotating body