Z-phase Formation during Creep and Aging in 9-12%Cr Heat Resistant Steels
スポンサーリンク
概要
- 論文の詳細を見る
The precipitation behavior of the Z phase was investigated after long-term creep exposure in ASME-T91, T92, T122 without δ-ferrite, and T122 with δ-ferrite through elemental mapping using EF-TEM. The Z phase was identified by comparing the Cr map with the V map. Most of the Z phase was observed around prior austenite grain boundaries and/or packet boundaries in all of the steels examined. In T122 with δ-ferrite, the Z phase also precipitates around the δ-ferrite. In particular, the number of MX carbonitrides was very small in T122 with a large amount of the Z phase. The main metallic composition of the Z phase in T91 was the same as that in T92. In T122, the Z phase contained a lower Nb content. The main metallic composition of the Z phase around the δ-ferrite was the same as that in the other areas. There was no large difference in the size distribution of the Z phase among the steels. The mean diameter of the Z phases for T122 with δ-ferrite was relatively large in spite of a shorter creep exposure in contrast with T91 and T92. The number density of the Z phases increased with increasing creep exposure time except in the case of T91. The order of the number density was T122 with δ-ferrite, T91, T122 without δ-ferrite, and T92. In crept samples, the amount of Z phase in the gauge portion was higher than that in the grip portion, meaning that stress and/or strain promotes the formation of a Z phase during creep exposure.
- 2006-05-15
著者
-
KIMURA Kazuhiro
National Institute for Materials Science
-
SAWADA Kota
National Research Institute for Metals
-
Kimura Kazuhiro
Materials Data Sheet Station National Institute For Materials Science
-
Sawada Kota
Materials Reliability Center National Institute For Materials Science
-
Sawada Kota
Materials Information Technology Station National Institute For Materials Science
-
Kushima Hideaki
Materials Data Sheet Station National Institute For Materials Science
-
Kushima Hideaki
Materials Information Technology Station National Institute For Materials Science
-
Kimura Kazuhiro
National Research Institute For Metals
関連論文
- Effects of Full Annealing Heat Treatment on Long-term Creep Strength of 2.25Cr-lMo Steel Welded Joint
- Effects of Ni and Heat Treatment on Long-term Creep Strength of Precipitation Strengthened 15Cr Ferritic Heat Resistant Steels
- Influence of Chemical Composition and Heat Treatment Condition on Impact Toughness of 15Cr Ferritic Creep Resistant Steel
- Improvement in Creep Strength of Precipitation Strengthened 15Cr Ferritic Steel by Controlling Carbon and Nitrogen Contents
- Effects of W and Co on Long-term Creep Strength of Precipitation Strengthened 15Cr Ferritic Heat Resistant Steels
- D311 IMPROVEMENT IN CREEP STRENGTH OF PRECIPITATION STRENGTHENED 15CR FERRITIC STEEL BY CONTROLLING OF CARBON AND NITROGEN CONTENTS
- Development of high strength 15Cr creep resistant steel for low emission power plant
- Effects of W and Co on the Microstructure and Creep Strength of the Precipitation Strengthened 15Cr Ferritic Steels(Special Issue on Creep and Fatigue at Elevated Temperatures)
- SB-08-3(037) Effects of W and Co on the Microstructure and Creep Strength of the Precipitation Strengthened 15Cr Ferritic Steels(Advanced Heat Resistant Steels)
- SB-08-2(034) Development of Precipitation Strengthened 15Cr Ferritic Creep Resistant Steel(Advanced Heat Resistant Steels)
- SB-06-4(038) Changes in Precipitates of Modified 9Cr-1Mo Steel During Long-term Creep Deformation at 873K and 923K(Changes in Microstructure 1)
- Development of High Strengh 15Cr Ferritic Creep Resistant Steel with Addition of Tungsten and Cobalt
- Development of High Strength 15Cr Ferritic Creep Resistant Steel
- Phase Equilibrium between Austenite and MX Carbonitride in a 9Cr-1Mo-V-Nb Steel
- Low Temperature Specific Heat and Electrical Resistivity in Orthorhombic YBa_2Cu_3O_ and Tetragonal YBa_2Cu_3O_
- SB-07-3(083) Effect of Microstructural Changes During Creep on The Creep Rate at 823K in Type 304 Heat Resistant Steel(Changes in Microstructure 2)
- Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel
- Characterization of the Internal Friction Properties of 2.25Cr-1Mo Steel
- Improvement of Omega Method for Creep Life Prediction
- Two-phase Separation of Primary MX Carbonitride during Tempering in Creep Resistant 9Cr1MoVNb Steel
- Creep Fracture Mechanism Map and Creep Damage of Cr-Mo-V Turbine Rotor Steel
- Electrophoretic Karyotype and Gene Assignment to Chromosomes of Aspergillus oryzae
- D312 INFLUENCE OF CHEMICAL COMPOSITION AND HEAT TREATMENT CONDITION ON IMPACT TOUGHNESS OF 15CR FERRITIC CREEP RESISTANT STEEL
- TTP Diagrams of Z Phase in 9-12% Cr Heat-Resistant Steels
- Z-phase Formation during Creep and Aging in 9-12%Cr Heat Resistant Steels
- Contribution of Microstructural Factors to Hardness Change during Creep Exposure in Mod.9Cr-1Mo Steel
- Effect of Nitrogen Content on Microstructural Aspects and Creep Behavior in Extremely low Carbon 9Cr Heat-resistant Steel
- Elevation Properties of a Quasi-Zenith Satellite System Using Circular Orbits(Recent Fundamental Technologies for Broadband Satellite Communications)
- In-Beam Stress Corrosion Tests for Welded 308 Stainless Steel in Pure Water at 473 K