Special values of the spectral zeta functions for locally symmetric Riemannian manifolds
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we establish the formulas expressing the special values of the spectral zeta function ξ<SUB>Δ</SUB>(n) of the Laplacian Δ on some locally symmetric Riemannian manifold Γ\bsla G/K in terms of the coefficients of the Laurent expansion of the corresponding Selberg zeta function. As an application, we give a numerical estimation of the first eigenvalue of Δ by computing the values ξ<SUB>Δ</SUB>(n) numerically, when Γ\bsla G/K is a Riemann surface with Γ being the quaternion group.
- 社団法人 日本数学会の論文
- 2005-01-01
著者
関連論文
- Splitting density for lifting about discrete groups
- Special values of the spectral zeta functions for locally symmetric Riemannian manifolds