Convergence of Alexandrov spaces and spectrum of Laplacian
スポンサーリンク
概要
- 論文の詳細を見る
Denote by \mathscr{A}(n) the family of isometry classes of compact n-dimensional Alexandrov spaces with curvature ≥q-1, and λ<SUB>k</SUB>(M) the k<SUP>th</SUP> eigenvalue of the Laplacian on M∈ \mathscr{A}(n). We prove the continuity of λ<SUB>k</SUB>.\ \mathscr{A}(n)→ \bm{R} with respect to the Gromov-Hausdorff topology for each k, n∈ \bm{N}, and moreover that the spectral topology in-troduced by Kasue-Kumura [{7}], [{8}] coincides with the Gromov-Hausdorff topology on \mathscr{A}(n).
- 社団法人 日本数学会の論文
著者
関連論文
- A topological splitting theorem for weighted Alexandrov spaces
- Collapsing three-manifolds with a lower curvature bound
- Convergence of Alexandrov spaces and spectrum of Laplacian