Neutron Excess Generation by Fusion Neutron Source for Self-Consistency of Nuclear Energy System
スポンサーリンク
概要
- 論文の詳細を見る
The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based of the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities.
- 社団法人 日本原子力学会の論文
- 1999-07-25
著者
-
SAITO Masaki
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
-
Artisyuk V
Tokyo Inst. Of Technol. Tokyo
-
Saito Masaki
Research Laboratory For Nuclear Reactors Tokyo Institute Of Technology
-
ARTISYUK Vladimir
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
-
CHMELEV Anatolii
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
-
Artisyuk Vladimir
Research Laboratory For Nuclear Reactors Tokyo Institute Of Technology
-
Chmelev Anatolii
Research Laboratory For Nuclear Reactors Tokyo Institute Of Technology
-
Saito Masakatu
Research Laboratory For Nuclear Reactors Tokyo Institute Of Technology
-
Saito Masaki
Research Laboratory For Nuclear Reactor Tokyo Institute Of Technology
関連論文
- Measurement and Analysis of Reactivity Worth of ^Np Sample in Cores of TCA and FCA
- Transmutation of ^Sn in Spallation Targets of Accelerator-Driven Systems
- ^Cm Transmutation in Accelerator-Driven System
- Neutron Excess Generation by Fusion Neutron Source for Self-Consistency of Nuclear Energy System
- Inherent Protection of Plutonium by Doping Minor Actinide in Thermal Neutron Spectra
- Denaturing of Plutonium by Transmutation of Minor-Actinides for Enhancement of Proliferation Resistance
- Effect of Transplutonium Doping on Approach to Long-life Core in Uranium-fueled PWR
- Long-life Water Cooled Small Reactor with U-Np-Pu Fuel
- Accumulation and Transmutation of Spallation Products in the Target of Accelerator-Driven System
- Fusion-Driven Transmutation of Fission Product Cesium in its Elemental Form
- Transmutation of Zirconium-93 in High-flux Blanket of Fusion Neutron Source
- Denaturing Generated Pu in Fast Breeder Reactor Blanket
- Production of Pa-U Fuel with Proliferation Resistance by 14MeV Neutron for Long-life Core
- Potential of ^Pa for Gas Cooled Long-life Core
- Protected Plutonium Breeding by Transmutation of Minor Actinides in Fast Breeder Reactor
- Evaluation of Proliferation Resistance of Plutonium Based on Decay Heat
- Nonlinear Fracture Mechanics Analysis of Surface Crack Propagation in Fusion Reactor First Wall by Cyclic High Heat Flux Irradiation
- Concept of Erbium Doped Uranium Oxide Fuel Cycle in Light Water Reactors
- Radiation Dose as a Barrier against Proliferation for Advanced Fuel Compositions
- Application of Fusion Neutron Source for Denaturing of Plutonium
- Blanket Safety by GEMSAFE Methodology