スポンサーリンク
Department Of Mathematical Science Faculty Of Engineering Science Osaka University | 論文
- ASYMPTOTIC ESTIMATION THEORY FOR TIME SERIES REGRESSION MODELS WITH MULTIPLE CHANGE POINTS
- DYNAMIC PORTFOLIO OPTIMIZATION USING GENERALIZED DYNAMIC CONDITIONAL HETEROSKEDASTIC FACTOR MODELS
- BOOTSTRAP SMOOTHING PARAMETER SELECTION FOR DISTRIBUTION FUNCTION ESTIMATION
- Quasi-Periodic Solutions of the Orthogonal KP Equation-Transformation Groups for Soliton Equations V-
- Transformation Groups for Soliton Equations-Euclidean Lie Algebras and Reduction of the KP Hierarchy-
- KP Hierarchies of Orthogonal and Symplectic Type : Transformation Groups for Soliton Equations VI
- Operator Approach to the Kadomtsev-Petviashvili Equation : Transformation Groups for Soliton Equations III
- NON-SYMMETRIC DIRICHLET FORMS FOR OBLIQUE REFLECTING DIFFUSIONS
- AN ESTIMATION METHOD IN TIME SERIES ERRORS-IN-VARIABLES MODELS
- On Quasi-Periodic Solutions of the Field Equation of the Classical Massive Thirring Model
- Quasi-Periodic Solutions of the Sine-Gordon Equation and the Massive Thirring Model (Theory of Nonlinear Waves)
- New $R$ Matrices Associated with Cyclic Representations of $U\sb q(A\sp {(2)}\sb 2)$
- Cyclic Representations of $\textit{U}_q(\mathfrak{s}\mathcal{I}$(n+1, $\textbf{C}))$
- Method for Generating Discrete Soliton Equations.IV
- Method for Generating Discrete Soliton Equation.III
- Analogue of Inverse Scattering Therory for the Discrete Hill's Equation and Exact Solutions for the Periodic Toda Lattice
- Periodic Multi-Soliton Solutions of Korteweg-de Vries Equation and Toda Lattice
- Method for Generating Discrete Soliton Equation.II
- Method for Generating Discrete Soliton Equations.I
- COMMENT ON EFRON'S COUNTEREXAMPLE