スポンサーリンク
大阪市立大学数学研究所 | 論文
- QUANDLE COCYCLES FROM GROUP COCYCLES (Intelligence of Low-dimensional Topology)
- Lee's homology and Rasmussen invariant (Intelligence of Low-dimensional Topology)
- INVARIANTS OF CONJUGACY CLASSES OF SURFACE BRAIDS DERIVED FROM ALEXANDER QUANDLES OR CORE QUANDLES (Intelligence of Low-dimensional Topology)
- 26aRD-4 弱引力領域におけるLieb-Liniger模型の状態方程式と相転移(26aRD 量子エレクトロニクス(ボソン),領域1(原子・分子,量子エレクトロニクス,放射線物理))
- New infinite series of Einstein metrics on sphere bundles from AdS black holes
- Matrix Model on a Time-dependent Plane-wave(Quantum Field Theories: Fundamental Problems and Applications)
- 25aYD-9 Simultaneous realization of Partial Higgs and Partial Breaking of N =2 Supersymmetry(素粒子論)
- Supersymmetric U(N) Gauge Model and Partial Breaking of N=2 Supersymmetry
- ハイパートーラスグラフとその同変コホモロジー(変換群論の手法)
- Multiple positive and sign-changing solutions for nonlinear Schrodinger equations (Dynamics of spatio - temporal patterns for the system of reaction - diffusion equations)
- Multiple solutions for some singular perturbation problem (Variational Problems and Related Topics)
- Multi-peak positive solutions for nonlinear Schrodinger equations with critical frequency(Variational Problems and Related Topics)
- Ford domains of a certain hyperbolic 3-manifold whose boundary consists of a pair of once-punctured tori, II(Topology, Complex Analysis and Arithmetic of Hyperbolic Spaces)
- Ford domains of a certain hyperbolic 3-manifold whose boundary consists of a pair of once-punctured tori(Complex Analysis and Geometry of Hyperbolic Spaces)
- Knots and minimal surfaces (Geometry related to the theory of integrable systems)
- Symplectic構造の分解 (部分多様体の微分幾何学およびその周辺領域の研究)
- Symplectic 等質空間と随伴軌道について(部分多様体の微分幾何学)
- $c^2_1= 2χ-1$を満たし 2-torsion を持つ極小代数曲面に関して(代数幾何と位相幾何の周辺)
- Surfaces with $c^2_1=2\chi-1$ and their torsion groups (Local invariants of families of algebraic curves)
- Existence and non-existence for nonlinear Schrodinger equations (Progress in Variational Problems : New Trends of Geometric Gradient Flow and Critical Point Theory)