神田 美穂 | Department Of Computer Science Tokyo Institute Of Technology
スポンサーリンク
概要
Department Of Computer Science Tokyo Institute Of Technology | 論文
- Statistical active learning for efficient value function approximation in reinforcement learning (ニューロコンピューティング)
- Least Absolute Policy Iteration — A Robust Approach to Value Function Approximation
- Adaptive importance sampling with automatic model selection in value function approximation (ニューロコンピューティング)
- Information-maximization clustering: analytic solution and model selection (情報論的学習理論と機械学習)
- New feature selection method for reinforcement learning: conditional mutual information reveals implicit state-reward dependency (情報論的学習理論と機械学習)